136 research outputs found

    Approximately Stable Matchings with Budget Constraints

    Full text link
    This paper considers two-sided matching with budget constraints where one side (firm or hospital) can make monetary transfers (offer wages) to the other (worker or doctor). In a standard model, while multiple doctors can be matched to a single hospital, a hospital has a maximum quota: the number of doctors assigned to a hospital cannot exceed a certain limit. In our model, a hospital instead has a fixed budget: the total amount of wages allocated by each hospital to doctors is constrained. With budget constraints, stable matchings may fail to exist and checking for the existence is hard. To deal with the nonexistence of stable matchings, we extend the "matching with contracts" model of Hatfield and Milgrom, so that it handles approximately stable matchings where each of the hospitals' utilities after deviation can increase by factor up to a certain amount. We then propose two novel mechanisms that efficiently return such a stable matching that exactly satisfies the budget constraints. In particular, by sacrificing strategy-proofness, our first mechanism achieves the best possible bound. Furthermore, we find a special case such that a simple mechanism is strategy-proof for doctors, keeping the best possible bound of the general case.Comment: Accepted for the 32nd AAAI Conference on Artificial Intelligence (AAAI2018). arXiv admin note: text overlap with arXiv:1705.0764

    Randomized Strategies for Robust Combinatorial Optimization

    Full text link
    In this paper, we study the following robust optimization problem. Given an independence system and candidate objective functions, we choose an independent set, and then an adversary chooses one objective function, knowing our choice. Our goal is to find a randomized strategy (i.e., a probability distribution over the independent sets) that maximizes the expected objective value. To solve the problem, we propose two types of schemes for designing approximation algorithms. One scheme is for the case when objective functions are linear. It first finds an approximately optimal aggregated strategy and then retrieves a desired solution with little loss of the objective value. The approximation ratio depends on a relaxation of an independence system polytope. As applications, we provide approximation algorithms for a knapsack constraint or a matroid intersection by developing appropriate relaxations and retrievals. The other scheme is based on the multiplicative weights update method. A key technique is to introduce a new concept called (η,γ)(\eta,\gamma)-reductions for objective functions with parameters η,γ\eta, \gamma. We show that our scheme outputs a nearly α\alpha-approximate solution if there exists an α\alpha-approximation algorithm for a subproblem defined by (η,γ)(\eta,\gamma)-reductions. This improves approximation ratio in previous results. Using our result, we provide approximation algorithms when the objective functions are submodular or correspond to the cardinality robustness for the knapsack problem

    Z-score-based modularity for community detection in networks

    Full text link
    Identifying community structure in networks is an issue of particular interest in network science. The modularity introduced by Newman and Girvan [Phys. Rev. E 69, 026113 (2004)] is the most popular quality function for community detection in networks. In this study, we identify a problem in the concept of modularity and suggest a solution to overcome this problem. Specifically, we obtain a new quality function for community detection. We refer to the function as Z-modularity because it measures the Z-score of a given division with respect to the fraction of the number of edges within communities. Our theoretical analysis shows that Z-modularity mitigates the resolution limit of the original modularity in certain cases. Computational experiments using both artificial networks and well-known real-world networks demonstrate the validity and reliability of the proposed quality function.Comment: 8 pages, 10 figure

    Optimal Composition Ordering Problems for Piecewise Linear Functions

    Get PDF
    In this paper, we introduce maximum composition ordering problems. The input is nn real functions f1,,fn:RRf_1,\dots,f_n:\mathbb{R}\to\mathbb{R} and a constant cRc\in\mathbb{R}. We consider two settings: total and partial compositions. The maximum total composition ordering problem is to compute a permutation σ:[n][n]\sigma:[n]\to[n] which maximizes fσ(n)fσ(n1)fσ(1)(c)f_{\sigma(n)}\circ f_{\sigma(n-1)}\circ\dots\circ f_{\sigma(1)}(c), where [n]={1,,n}[n]=\{1,\dots,n\}. The maximum partial composition ordering problem is to compute a permutation σ:[n][n]\sigma:[n]\to[n] and a nonnegative integer k (0kn)k~(0\le k\le n) which maximize fσ(k)fσ(k1)fσ(1)(c)f_{\sigma(k)}\circ f_{\sigma(k-1)}\circ\dots\circ f_{\sigma(1)}(c). We propose O(nlogn)O(n\log n) time algorithms for the maximum total and partial composition ordering problems for monotone linear functions fif_i, which generalize linear deterioration and shortening models for the time-dependent scheduling problem. We also show that the maximum partial composition ordering problem can be solved in polynomial time if fif_i is of form max{aix+bi,ci}\max\{a_ix+b_i,c_i\} for some constants ai(0)a_i\,(\ge 0), bib_i and cic_i. We finally prove that there exists no constant-factor approximation algorithm for the problems, even if fif_i's are monotone, piecewise linear functions with at most two pieces, unless P=NP.Comment: 19 pages, 4 figure

    Additive Approximation Algorithms for Modularity Maximization

    Get PDF
    The modularity is a quality function in community detection, which was introduced by Newman and Girvan (2004). Community detection in graphs is now often conducted through modularity maximization: given an undirected graph G=(V,E)G=(V,E), we are asked to find a partition C\mathcal{C} of VV that maximizes the modularity. Although numerous algorithms have been developed to date, most of them have no theoretical approximation guarantee. Recently, to overcome this issue, the design of modularity maximization algorithms with provable approximation guarantees has attracted significant attention in the computer science community. In this study, we further investigate the approximability of modularity maximization. More specifically, we propose a polynomial-time (cos(354π)1+58)\left(\cos\left(\frac{3-\sqrt{5}}{4}\pi\right) - \frac{1+\sqrt{5}}{8}\right)-additive approximation algorithm for the modularity maximization problem. Note here that cos(354π)1+58<0.42084\cos\left(\frac{3-\sqrt{5}}{4}\pi\right) - \frac{1+\sqrt{5}}{8} < 0.42084 holds. This improves the current best additive approximation error of 0.46720.4672, which was recently provided by Dinh, Li, and Thai (2015). Interestingly, our analysis also demonstrates that the proposed algorithm obtains a nearly-optimal solution for any instance with a very high modularity value. Moreover, we propose a polynomial-time 0.165980.16598-additive approximation algorithm for the maximum modularity cut problem. It should be noted that this is the first non-trivial approximability result for the problem. Finally, we demonstrate that our approximation algorithm can be extended to some related problems.Comment: 23 pages, 4 figure

    Applying Geographically Weighted Regression to Conjoint Analysis: Empirical Findings from Urban Park Amenities

    Get PDF
    The objective of this study is to develop spatially-explicit choice model and investigate its validity and applicability in CA studies. This objective is achieved by applying locally-regressed geographically weighted regression (GWR) and GIS to survey data on hypothetical dogrun facilities (off-leash dog area) in urban recreational parks in Tokyo, Japan. Our results show that spatially-explicit conditional logit model developed in this study outperforms traditional model in terms of data fit and prediction accuracy. Our results also show that marginal willingness-to-pay for various attributes of dogrun facilities has significant spatial variation. Analytical procedure developed in this study can reveal spatially-varying individual preferences on attributes of urban park amenities, and facilitates area-specific decision makings in urban park planning.Choice experiments, conjoint analysis, dogrun, geographically weighted regression, spatial econometrics, Research Methods/ Statistical Methods, Resource /Energy Economics and Policy,

    Surrogate Optimization for p-Norms

    Get PDF
    In this paper, we study the effect of surrogate objective functions in optimization problems. We introduce surrogate ratio as a measure of such effect, where the surrogate ratio is the ratio between the optimal values of the original and surrogate objective functions. We prove that the surrogate ratio is at most mu^{|1/p - 1/q|} when the objective functions are p- and q-norms, and the feasible region is a mu-dimensional space (i.e., a subspace of R^mu), a mu-intersection of matroids, or a mu-extendible system. We also show that this is the best possible bound. In addition, for mu-systems, we demonstrate that the ratio becomes mu^{1/p} when p q. Here, a mu-system is an independence system such that for any subset of ground set the ratio of the cardinality of the largest to the smallest maximal independent subset of it is at most mu. We further extend our results to the surrogate ratios for approximate solutions
    corecore